H=-t^2+4t+50

Simple and best practice solution for H=-t^2+4t+50 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-t^2+4t+50 equation:



=-H^2+4H+50
We move all terms to the left:
-(-H^2+4H+50)=0
We get rid of parentheses
H^2-4H-50=0
a = 1; b = -4; c = -50;
Δ = b2-4ac
Δ = -42-4·1·(-50)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-6\sqrt{6}}{2*1}=\frac{4-6\sqrt{6}}{2} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+6\sqrt{6}}{2*1}=\frac{4+6\sqrt{6}}{2} $

See similar equations:

| 14=14x-7 | | 33=u/7+25 | | x+x-3=120 | | p-92/4=2 | | x/5+23=32 | | p-92=2 | | 24+32p=24+32p | | |-3+5x|=-48 | | 6x+84=84 | | 5/v=2/v-3 | | v/5=v/2-3 | | -6b+17=23-4b | | 12=15(z-1/2) | | 5x-8=7x-21 | | -5x-25x+-40x+10=-4x-8x | | y-4/5=2/1/4 | | 16x*12x=3072 | | 18-n=7n= | | -3=y/4-8 | | 0.6+y=30 | | –20−11s=–9s+20 | | –9d=–7d+10 | | 12x*3x=81 | | 1=-7+4k | | 12x+3x=81 | | -1=-3h+5 | | X2-4x+36=9x | | x+(2x+10)=46 | | -13=-b/5-8 | | 2x-36=66 | | 527-96x+4x^2=0 | | 10(w+5)=90 |

Equations solver categories